Developing Behaviorally Based Monitoring and Management Tools for the Invasive Brown Marmorated Stink Bug, *Halyomorpha halys* (Stål)

Tracy C. Leskey
USDA-ARS
Appalachian Fruit Research Station
Kearneysville, WV 25430 USA
Key Components of Trap-Based Monitoring Tools

- Visual Stimuli
- Olfactory Stimuli
- Capture Mechanism
- Deployment Strategy
2009-2010 BMSB Response to Visual Stimuli

- Responses to visual stimuli associated with trap bases.
- Baited and unbaited traps at the periphery of orchards. Four replicates. Sampled twice weekly.
- Captures from October 7-November 17, 2009 and July 23-October 14, 2010.
Adult and Nymphal Captures

2009 Adult Captures
- **BAITED**: Mean No. SBs Per Trap
- **UNBAITED**: Mean No. SBs Per Trap
- **Main Groups**: BLACK, GREEN, WHITE, CLEAR
- **Significance Levels**: a, b, c

2010 Adult Captures
- **BAITED**: Mean Number of Adults Per Sample
- **UNBAITED**: Mean Number of Adults Per Sample
- **Main Groups**: Green, Black, Yellow, White, Clear
- **Significance Levels**: a, b, c

2010 Nymphal Captures
- **BAITED**: Mean Number of Nymphs Per Sample
- **UNBAITED**: Mean Number of Nymphs Per Sample
- **Main Groups**: Black, Yellow, Green, White, Clear
- **Significance Levels**: a, b, c
Monitoring Adult and Nymphal Populations

- In preliminary study, presence of ear tag increased captures by 250%.

- Added ¼ piece of cattle ear tag (Double Barrel, 68% lambda-cyhalothrin and 14% pirimiphos-methyl) to reduce escape.
• **Visual Stimulus**
 - Large black pyramid

• **Olfactory Stimulus**
 - methyl (2E,4E,6Z)-decatrienoate

• **Capture Mechanism**
 - Tapered pyramid to inverted funnel jar with DDVP toxicant strip

• **Deployment Strategy**
 - Traps placed in peripheral row of orchard
Pheromone of *Plautia stali*

- Methyl (2E, 4E, 6Z)-decatrieonate.

- Cross attractive to brown marmorated stink bug and other pentatomids.
Will BMSB Respond to Methyl (2E, 4E, 6Z)-Decatrienoate early in the season?

- Reports of early-season attraction in Asia.
- Previous trials had relied on low doses (<5 mg).
- Evaluated 66 mg lures.
Methyl (2E,4E,6Z)-decatrieionate (MDT) attractive to adults only during the late-season. Confirmed in MD, WV, NJ, PA, VA and other states in 2011. Not attractive to adults in early- and mid-season.
Almost No Captures in Traps Baited with MDT, Despite Very Large Immigrating Populations
Progress Toward Identification of BMSB Aggregation Pheromone
USDA-ARS, Beltsville, MD and Kearneysville, WV
Early Season Trial Indicates Promising Activity

13-24 May 2011

Mean No. Per Trap

#2 #5 #6 Unbaited

Treatment
Two Treatments Show Significant Behavioral Activity

27 May-24 June 2011

Traps baited with #6 capture ~4x more than control
#6 and #2 Continue to Demonstrate Significant Activity

8 July - 2 August 2011

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mean No. Per Trap</th>
</tr>
</thead>
<tbody>
<tr>
<td>#2</td>
<td>ab</td>
</tr>
<tr>
<td>#6</td>
<td>a</td>
</tr>
<tr>
<td>#8</td>
<td>b</td>
</tr>
<tr>
<td>Unbaited</td>
<td>b</td>
</tr>
</tbody>
</table>

Traps baited with #6 capture ~6x more than control
Several Treatments Demonstrate Significant Activity

12 August - 6 September 2011

Traps baited with #2, 6 and 9 capture ~6x more than control
Identification of the BMSB Aggregation Pheromone

9-30 September 2011

Traps baited with #10 captured ~15x more than control and ~3-4x more than other treatments.
Is #10 Attractive in the Early Season?

Pre-Trial (March 20-April 17, 2012)
Early Season Attraction Documented for BMSB
March 20-April 17, 2012

N = 77 BMSB

Mean No. Adults Per Trap

Treatment

#10

Control

N = 8 BMSB

*
Broad Validation in Multi-State Trial

- Is BMSB attracted to #10 in the early season?
- Is BMSB attracted to #10 season-long?
- How attractive is this stimulus relative to MDT and unbaited traps?
- WV, MD, VA, PA, NJ, NY, DE, NC, OR, WA, and OH
General Protocol

• Black pyramid traps

• Three odor treatments
 – 1) #10
 – 2) MDT
 – 3) unbaited control

• Traps are deployed between wild host habitat and agricultural production area.

• Traps were deployed in mid-April and left in place season-long.
Results From Season-Long Monitoring in Commercial Orchards

Early Season
Mid-April – Mid June

Mid-Season
Mid June - Mid August

Late Season
Mid-August – Early October

• BMSB reliably captured during early season.
• Low numbers during much of mid-season.
• MDT very attractive and #10 attractive in the late season.
Dose Response Trial
June 14-July 19, 2012

11:1 Ratio (Baited: Unbaited) for 10 mg lure
~25:1 Ratio (Baited: Unbaited) for 100 mg lure
Lure Affordability: Encouraging Results from Purity Trial

![Bar chart showing mean number of traps per group.](chart.png)
Conclusions

• Aggregation pheromone of BMSB has been identified.

• This stimulus provides reliable, season-long detection of BMSB.

• Likely will need a higher loading of material.

• Crude material can be used to formulate lures, reducing overall costs.
Visual Cues

Identifying Optimal Wavelengths and Intensities of Light
Night View
High Captures and Apparent Vicinity-Based Responders
A Total of 21 Traps Baited With Light-Based Stimuli Captured 13,457 Adult BMSB in ~6 Weeks During Late Summer

Blue provided greatest level of species-specificity. Fewer non-targets captured.
Very Large Numbers of Adults Captured and Consistent Capture Patterns Recorded Through Mid-September

Movement To Overwintering Sites

Sample Week

Mean No. BMSB Adults Per Trap

- White
- Black
- Blue
- Green
- Yellow
- Red
- Control
Season-Long Trial 2012

- Do we capture BMSB reliably with the most attractive stimuli?
- Species-specificity of most attractive visual stimuli?
Species Specificity Trial
June 3 – September 30, 2012
Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontarget Captures

Mean No. Adult BMSBs Per Trap

Mean No. Nontargets Per Trap

White Blue Black Control

White Blue Black Control

Mean Weekly Captures

BMSB Captures

Nontar
Season-Long Captures of BMSB

Mean No. Adults Per Trap

Sample Date

Blue
Black
White
Control

12-Jun 26-Jun 10-Jul 24-Jul 7-Aug 21-Aug 4-Sep 18-Sep

Sample Date
Conclusions

• Under competitive field-conditions, traps provisioned with a white light source captured significantly more BMSBs and non-targets.

• Traps provisioned with blue light sources captured fewer BMSBs, but also fewer nontargets.

• Although captures of BMSB were lower in traps provisioned with black light sources, patterns of capture are identical.

• White and blue light sources appear most promising.
Next Steps

• Establish physiological and behavioral state of responders to different stimuli.

• Combining stimuli - #10, methyl-(2E, 4E, 6Z)-decatrioenate, and light-based sources.
 - Improve monitoring tools and develop attract and kill strategies.
BMSB is a Landscape-level Threat

Invasive Tree-of-Heaven

Native Woody Hosts

Corn

Apple
Where Do BMSB Overwinter?

- Do BMSB overwinter in the natural landscape?
- Where do they overwinter in the natural landscape?
- How many BMSB could be overwintering in the natural landscape?
Detector Dogs for Locating BMSB
Why Is Dispersal Important?

• How far can BMSB travel to reach crops or potential overwintering sites?

• How does biological activity in the natural landscape influence population dynamics?

• Establishing risk.
Laboratory-Based Flight Mill Studies To Measure Capacity
$y = 11.748x + 453.11$

$R^2 = 0.0059$

(N = 186)
Semi-Field Observations of Individual Movements With Harmonic Radar
1. Positive detection of the radar-tagged bugs: 100% (n = 30)

2. Mean time duration to detection: 2.00 (± 0.19) min

3. Mean distance from the bugs when detected: 14.60 (± 0.40) m
Biological Control Offers Long-Term Solution

Strategies To Reduce Populations Across Entire Landscape
Conservation Biological Control – Indigenous Predators

- **Arthropods.** Spiders, Assassin bugs, Wheel Bugs, Lacewings, Preying Mantids, and Ants.

- **Birds.** Grackles, Crows, Song birds, Chickens, Guinea hens.
Conservation Biological Control - Indigenous Parasites

- Tachinidae. Flies deposit eggs on adults. Very few complete development. Not very effective.

Photo courtesy of Jeff Aldrich

Photo courtesy of J. Wildonger

Photo courtesy of Kim Hoelmer
Parasitism and Predation Rates Vary Among Host Plants

Field Corn 55%

Eggplant 23%

Pepper 26%

Paulownia 5%
Conservation Biological Control - Indigenous Pathogens

Photo courtesy of Tom Kuhar
Classical Biological Control

Tachinidae (Korea)

Photos courtesy of Kim Hoelmer
What’s Next?

Overview

The brown marmorated stink bug, *Halyomorpha halys* (Hã£š¢), is a voracious eater that damages fruit, vegetable, and ornamental crops in North America. With funding from USDA’s Specialty Crop Research Initiative, our team of more than 50 researchers is uncovering the pest’s secrets to find management solutions for growers, seeking strategies that will protect our food, our environment, and our farms.

Updates

Scientists draw maps to stop stink bug pirates An integrated pest management program running since the 1990s has led to fresh insights about a new invader. Scientists are deploying maps to aid the fight.

Researchers discover the brown marmorated stink bug’s winter hideout New insights into the invasive pest’s behavior could help growers protect farms located near woodlands.

Will 2013 be the year of the stink bug? Farmers across the nation are being warned that stink bug populations could explode in 2013 after a slight reprieve in 2012. Source: Ag Professional, January 30, 2013.

Stink bug threatens integrated pest management plans, researchers say Scientists warn growers to watch for the brown marmorated stink bug this summer which they say could devastate biological pest management in Central Washington tree fruit. Source: Capital Press, January 25, 2013.

Stink bug’s resurfacing may squash farmers’ hopes for a strong 2013 Crop producers received a reprieve from the bugs in 2012, but the insects may be coming back and with a greater spread of attack. Source: Georgia Public Broadcasting, January 19, 2013.

After reprieve last year, stink bugs could mount a comeback this spring Experts caution that the brown marmorated stink bug will likely make a reappearance in the Washington D.C. area this year. Source: Washington Post, January 4, 2013.

Stink bug population will bounce back in 2013 The invasive insects from Asia are poised to come back with a vengeance in 2013. Source: American University
Acknowledgements

- USDA-ARS, USDA NIFA SCRI # 2011-51181-30937, and USDA-APHIS

Doo-Hyung Lee
Starker Wright
Sean Wiles
Brent Short
John Cullum
Teresa Mersing
Zoe Milburn
Torri Hancock
Jeanne Sullivan
Cameron Scorza
Brittany Rankin