Turfgrass Pest Management

Erin W. Hodgson
Extension Entomologist
Utah State University

Utah Green Conference
Sandy, Utah; 22 January 2007
Outline

• Basics of IPM

• Best management practices in turf

• Most common turf pests

• Where to get more information
Early detection is key!

• Scouting is best IPM tactic
 – Detect early infestations
 – Prevent widespread outbreaks
 – Use spot treatments to reduce damage

• Regular inspections are necessary
 – Confirms presence/absence
 – Assess the need for action
 – Evaluate treatment efficacy
 – Develop site history
Scouting techniques

- Observation
- Soil samples
- Irritants (i.e., detergents)
- Pit fall traps
- Sweep nets
- Sticky traps
- Pheromone/light traps

Try to use a uniform sampling design to ensure coverage of turf
Random or uniform sampling??
Soil sampling

- Start scouting for insects in June
- Scout for adults weekly
- Start scouting for eggs, larvae in August
Biological Control

• Insects controlling pests

• Predators, parasitoids, pathogens
 – Most pests have enemies
 – Will respond to low/moderate density

• Encourage natural enemies
 – Use native nectar-producing plants
 – Avoid monocultures
Examples of biocontrol

- **Arthropods** *(sample the good, bad and ugly!)*
 - Ladybeetles, ground beetles
 - Big-eyed bugs, lacewings
 - Predaceous thrips and mites
 - Parasitic wasps and flies
Examples of biocontrol

• **Arthropods** (sample the good, bad and ugly!)
 – Ladybeetles, ground beetles
 – Big-eyed bugs, lacewings
 – Predaceous thrips and mites
 – Parasitic wasps and flies

• **Fungi, bacteria, viruses, nematodes**
Parasitoid wasp

Ladybug

Lacewing
Chemical control

• traditional pesticides
 – broad spectrum, long residual, toxic
 – pyrethroids, organophosphates, carbamates

• reduced risk “softer” pesticides
 – selective, short residual, earth-friendly
 – microbial (bacteria, nematode, fungi)
 – soap, oil, dust, mineral (zinc, copper, sulfur)
 – botanical (pyrethrum, nicotine)
Microbials

- kill, reduce reproduction, or shorten the life
- usually specific to target species or to life stages
- depends on environment or host abundance
- control by pathogens may be unpredictable
- relatively slow acting; they may take several days or longer to provide adequate control
Suffocants, Desiccants

• Soaps, oils, sucrose esters, dusts, DE
 – Smother to prevent breathing
 – Acts by disrupting the waxy outer layer (cuticle) of soft-bodied insects, causing the insect or mite to dry out and die
 – Concern®, Safer®, Sucroicide®, Dri-Die®, Bonide®, Entrust®, Success®

• Kaolin clay (Surround®)
 – Physical barrier, excessive grooming
Botanicals (aka plant derived)

• Neem (neem trees)
 – Trilogy®

• Pyrethrum (pyrethrum daisy)
 – Pyganic®, Evergreen®

• Rotenone (subtropical leguminous shrubs)
 – Pyrelin® (mixed with pyrethrins)

• Spinosad (bacterial fermentation)
 – Conserve®, Success®, Entrust®
Not all turf is the same

- **Cool season**
 - Kentucky bluegrass, tall fescue, perennial ryegrass, fine fescues, bentgrass
 - Grow best between 60-70°F (spring and fall)

- **Warm season**
 - Zoysiagrass, bermudagrass, buffalgrass
 - Grow best between 80-90°F (summer)
 - Heat and drought tolerant
Best management practice in turf

• UT homeowners use 2/3 of total water for the landscape

• Efficient water use is critical
 – Check irrigation system before 1st use
 – Confirm application rate
 – Use an irrigation timer
 – Flush irrigation after last use

Kopp and Hoover; www.hort.usu.edu/pdf/kelly/Irrigation.pdf
Use an irrigation schedule

- Startup until April 30 every 6 days
- May every 4 days
- June - August every 3 days
- September every 6 days
- October until shutdown every 10 days

Be dynamic!

Kopp; www.hort.usu.edu/pdf/kelly/New%20Folder/WCUrban.pdf
Irrigation

• Know your soil type
• Water less frequently, but more deeply
 – Ideal rate is 1” per application
 – Aeration may improve infiltration
• Water between 6 pm and 10 am
 – Minimize evaporation water loss
• Don’t forget about your ornamentals!

Kopp and Hoover; www.hort.usu.edu/pdf/kelly/Irrigation.pdf
Fertilization

- Consider your level of activity
- Fertilize when plants are growing
- Cool-season grasses
 - Need 2-3 lbs N/1000 ft²/year
 - Need 3-5 lbs N/1000 ft²/year for high traffic

Traffic Use May June July September October
Low 1 1 1
Medium 1 0.5 0.5 1 1
High 1 0.5 0.5 1 1

Kopp and Johnson; extension.usu.edu/files/publications/publication/HG_517.pdf
Mowing

• Keep turf between 2-4 inches
• Never take off more than 1/3 at one time
 – Use sharp blades
 – Taller grass means deeper roots
 – Taller grass collects more sunlight
• Return mulch when possible
 – Return nitrogen
 – Help to decrease evaporation

Kopp and Johnson; extension.usu.edu/files/publications/publication/HG_517.pdf
Turfgrass pests

• Turf pests grouped by feeding location
 1. Soil – damage root system
 2. Surface – feed above ground

• Soil-active insects are more harmful
 – Injury occurs at growing point
 – Soil offers protection from enemies
 – Difficult to detect, control
Common damage symptoms

- General thinning of grass
- Spongy, depressed areas
- Irregular brown patches
- Grass easily breaks away

*all of these can be confused with heat, drought stress, nutritional deficiencies, disease, chemical burn, animal feeding!
Dead or dormant?

- Cool season grass will go dormant if it’s too hot
- Watering will not make turf green
- Reduce mowing and traffic
Friend or foe?

• Dogs can cause brown/yellow spots
• High nitrogen concentration in urine
• Often confused with insects/disease
• Watering spots may help reduce damage
Most common turf pests in UT

- Billbugs
- Sod webworms
- Cutworms/armyworms
- Spider mites
- White grubs

- Sample *before* signs of injury!
Billbugs

- Immature weevils (snout beetles)
 - Denver, bluegrass, hunting
- Creamy colored, legless, “puffy rice”
- Larvae hollow out grass stems
 - Fine sawdust-like debris, frass
 - Stem discoloration, stems break away
- April/mid-May is optimal control
 - Threshold: 20 larvae/ft²
Sod webworms

- Immature snout moths
 - Complex of >20 species
 - Adults are buff-colored, head projected forward
 - Larvae are grey/tan with dark spots, brown head

- Larvae feed on leaves near surface
 - Ragged brown spots, frass
 - Adults fly over turf in “zigzag” pattern

- 1-3 generations/year; target young larvae
 - Threshold: 15 larvae/ft²
Cutworms/armyworms

- Immature noctuid moths
 - Adults are hairy, dark-colored
 - Larvae are dark, distinct head

- Larvae feed on leaves near surface
 - Small circular dead spots
 - Skeletonized leaves, frass

- 1-3 generations/year
 - Target young larvae
 - Threshold: 5 larvae/yd²
Spider mites

• Twospotted, Banks grass, clover
 – Tiny, oval shaped, various colors
• Colonies feed on leaves
 – All stages feed, 7-10 generations/year
 – Reproduce rapidly in hot, dry weather
• Grass turns yellow and dry out
• Target growing colonies (some are resistant)
 – Irrigation can alleviate outbreaks
White grubs

• Immature scarab beetles (grubs)
 – May/June, Masked chafer, Japanese

• Creamy colored, C-shaped body

• Larvae feed on turf roots
 – Patches of pale, dying grass
 – Spongy grass from large infestation

• Control young grubs
White grubs

- Immature scarab beetles (grubs)
 - May/June, Masked chafer, Japanese
- Creamy colored, C-shaped body
- Larvae feed on turf roots
 - Patches of pale, dying grass
 - Spongy grass from large infestation
- Control young grubs
White grub life cycle

- **Masked chafer has 1-year cycles**
 - Adults are tan, 5/8” long, dark head
 - Attracted to lights
- **Japanese beetle has 1-year cycle**
 - More about JB later…
- **May/June beetles have 3-year cycles**
 - Adults are tan to brown, 5/8 – 7/8” long
 - Adults can damage ornamentals
 - Attracted to lights
Black turfgrass ataenius

• 2 generations per year
 – Overwinter in leaf litter, debris
• Much smaller than other grubs, 1/4” long
• Damage to golf courses most common
Grub treatment guidelines

<table>
<thead>
<tr>
<th>Insect</th>
<th>#/ft²</th>
<th>#/4” core</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masked chafer</td>
<td>8-10</td>
<td>1</td>
</tr>
<tr>
<td>June beetles</td>
<td>3-5</td>
<td>1</td>
</tr>
<tr>
<td>Japanese beetle</td>
<td>8-10</td>
<td>1</td>
</tr>
<tr>
<td>Black turfgrass ataeinios</td>
<td>30-50</td>
<td>3-5</td>
</tr>
</tbody>
</table>
Japanese beetle in UT

• Initially detected in Orem, July 2006

• UDAF set up trapping network

• Not detected outside original “hot spot”

• More than 600 adults have been trapped
JB biology

• Adults have a broad host range
 – Rose, apple, stonefruits, Virginia creeper, willow, elm, birch, maples, pin oak, sycamore
 – Strongly attracted to ripening fruit
 – Release a mating/feeding pheromone

• Grubs feed on turfgrass roots
 – Overwintering stage
 – Can weaken turf system
JB description

• Adults
 – oval, ~1/2” long scarab beetle
 – Metallic green with bronze wing covers
 – Six white tufts along each side
 – Clubbed antennae
JB description, cont.

• Eggs – white, laid in small clusters
• Larvae (grubs)
 – C-shaped, ~1” long fully developed
 – Creamy white, brown head, dark “butt”
 – 3 pair of thoracic legs, no prolegs
• Pupae – white, fragile
JB life cycle
JB damage - adults

rose

Virginia creeper

blueberry

linden
JB damage - grubs

• Small patches of turf destroyed
• Patches coalesce, quickly
• Spongy turf, easily pulled back
• Keep plants healthy
 – Follow fertilization/irrigation schedules
• But not “too healthy”
 – Over fertilized turf becomes attractive
 – i.e., golf courses, parks
• Include non-attractive plants
 – Lilac, forsythia, dogwood, magnolia
JB trapping

• Use a pheromone trap (catch ~75%)
• Start monitoring early, look for damage
• Trece Inc.
 P.O. Box 129 P: 866.785.1313
 Route 1, Box 1765 F: 918.785.3036
 Adair, OK 74330 www.trece.com
JB control

• Adult control is difficult
 – Wide host range
 – Continuous feeding/mating movement
 – Insecticides are not recommended (at this time!)

• Many insecticides are available
 – Bayer Advanced®, Baythroid®, Concern®, malathion 5, Merit 2.5 G ®, Orthene®, Pounce®, Proaxis®, Sevin 4F®, Warrior®
 – Insecticidal soap, Conserve®
Considerations for JB adult control

• Flight is greatest on clear days, 84 - 95°F, winds <12 mph.

• A few beetles on plants will attract more; keeping numbers and damage low can mean fewer new arrivals.

• Adults begin feeding on plant tops and then move down - can pose coverage problems on large trees. Be aware of spray drift and applicator exposure.

• Some insecticides (carbaryl/permethrin) may flare non-targets. Use acephate or malathion if needed. Repeated applications may be necessary with short-residual products. Also, significant rainfall shortly after an application may reduce the effectiveness.
JB grub control

- Grub control is difficult
 - Threshold is 8-10/ft² with obvious damage
 - Treat if persistent grub damage is visible
 - Pushing product down in the soil
 - Insecticides are not recommended (at this time!)

- Insecticides are available
 - Merit 0.5G®, GrubEx® before egg hatch
 - Dylox 6.2G® for grub outbreaks
JB grub control

- Light aerification if thatch > ½”
- Pre-irrigate 48 hours
- Post-irrigate ½ - ¾”, then mow
- Repeat irrigation every 4 – 5 days
Summary

• Insect turf damage can be minimized

• Implement best management practices
 – Thatch, irrigation, fertilization, mowing
 – Create healthy turfgrass
 – Reduce pests, disease, weed problems

• Be ‘OK’ with less than perfection!
More information

• http://utahpests.usu.edu
• www.hort.usu.edu/html/extension/extension.htm
• extension.usu.edu/htm/horticulture

• Destructive turfgrass insects: biology, diagnosis and control. ISBN 1575040239
• Handbook of integrated pest management for turf and ornamentals. ISBN 0873713508
Thank you!

erin@biology.usu.edu
435.797.5689
utahbugs.usu.edu