Insects in the Home Yard and Garden

Diane Alston
Entomologist
Utah State University Extension
Master Gardener Course
2007
Lecture Topics

1. Resources on the Web
2. What is an insect?
3. Diagnosing insect problems
4. IPM & reduced-risk (lower toxicity) tools
5. Common insect pests:
 - Ornamentals
 - Vegetables
 - Fruit
Insect & Pest Management Resources on the Web

One-stop shopping for Utah pest management information

http://utahpests.usu.edu
Resources on the Web
“USU Extension Publications”

http://extension.usu.edu
Search for Information on the Web

"Google Search Engine"
What is an insect?

Insects:
- 6 legs
- 3 body regions
- Antennae
- Flight - adults

Arthropods
- Exoskeleton
- Segmented bodies

Non-Arthropods:
- Snails and Slugs

Insect Relatives:
- Spiders (Arachnids)
- Mites (Acari)
- Centipedes
- Millipedes
Most insects are not pests

Beneficial insects & mites
Insect Life Cycles

Complete Metamorphosis

Incomplete Metamorphosis
Proper Diagnosis!

Most plant health problems are not caused by biotic factors (pests: insects, diseases), but by abiotic factors (irrigation, environment, culture & care)
First Step: Proper Diagnosis!

Insect is present

Injury is present

What type of injury?

Friend or Foe?

What life stage is present?
Insect Plant-Feeding Types

Chewing

Piercing-Sucking

Borers

Gall Formers

Diagnosis
Scouting for Pests

- Look at the big picture
 - Pattern of plant decline/injury
 - Pest injury tends to be aggregated
 - Can injury be associated with irrigation or other pattern?
- Look at new growth
- Check for root/crown problems
- Hand lens for small insects and mites
- Scout every 1–2 weeks

Raspberry horntail injury to cane tips
Target & Timing

- **Target susceptible life stages**
 - Usually eggs and/or young

- **Time the control for target life stage(s) and weak points in their life cycle**
 - For severe and recurring pests - early in seasonal cycle when life stages are synchronized and before substantial injury has occurred
 - For occasional pests - wait and see if pest will be abundant
Integrated Pest Management (IPM)

- Plan ahead (use preventive strategies where possible)
- Use multiple pest management tools
 - Cultural
 - Mechanical
 - Biological
 - Chemical
- Treat only if needed (thresholds)
- Environmentally, economically, and socially sound
IPM Strategies

- Plant selection & planting
 - Site selection

- Irrigation – design for
 - Design for plant needs
 - Amount & application method
 - Group plants with similar needs

- Plant nutrition – prevent stress!!!

- Preventive controls for chronic pests
 - Sanitation
 - Traps, exclusion barriers
 - Oil sprays
 - Spring application of systemic or residual insecticide

Ips bark beetle-killed spruce trees in Garland, UT cemetery
IPM Strategies

- For “secondary pests”
 - Aphids, Scale, Leaf feeders
 - Exposed feeders
 - Use “soft” (selective) controls
 - Natural biological control is more prevalent

- For “primary pests”
 - Tree borers, Fruit feeders
 - Hidden feeders
 - Target / Timing for susceptible life stage(s) is critical
 - Maintain active residues for critical period

- Conserve natural enemies by avoiding toxic, broad-spectrum insecticides
Traps and Physical Barriers

- **Traps**
 - Yellow jacket wasps, slugs, spiders
- **Sticky bands**
- **Trees and shrubs**
- **Row covers**
- **Diatomaceous earth**
Biological Control

How can I make it work?

Outdoor landscapes - Conservation of natural enemies

- Avoid toxic chemicals
- Maintain a diverse plant environment (avoid monocultures)
- Cultivate plants that provide quality nectar & pollen
- Tolerate some herbivorous insects

Parasitic wasp that attacks caterpillars

Big-eyed bug nymph feeding on an insect egg
List of Plants with Quality Nectar and Pollen

<table>
<thead>
<tr>
<th>FAMILY</th>
<th>GENUS</th>
<th>COMMON NAME</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caprifoliaceae</td>
<td>Abelia</td>
<td>Abelia</td>
<td></td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Acer</td>
<td>maple</td>
<td></td>
</tr>
<tr>
<td>Aceraceae</td>
<td>Achillea</td>
<td>yarrow</td>
<td>A. millefolium var. yarrow</td>
</tr>
<tr>
<td>Asteraceae</td>
<td>Aconitum</td>
<td>monkshood</td>
<td></td>
</tr>
<tr>
<td>Lamiaceae</td>
<td>Agastache</td>
<td>hyssop</td>
<td></td>
</tr>
<tr>
<td>Lamiaceae</td>
<td>Ajuga</td>
<td>carpet bugle</td>
<td></td>
</tr>
<tr>
<td>Malvaceae</td>
<td>Althea</td>
<td>hollyhock</td>
<td>not doubled</td>
</tr>
<tr>
<td>Liliaceae</td>
<td>Alstroemeria</td>
<td>alstroemeria</td>
<td></td>
</tr>
<tr>
<td>Rosaceae</td>
<td>Amelanchier</td>
<td>serviceberry</td>
<td></td>
</tr>
<tr>
<td>Boraginaceae</td>
<td>Anchusa</td>
<td>wild forget-me-not</td>
<td></td>
</tr>
<tr>
<td>Apiaceae</td>
<td>Anethum</td>
<td>dill</td>
<td></td>
</tr>
<tr>
<td>Ranunculaceae</td>
<td>Aquilegia</td>
<td>columbine</td>
<td>not doubled</td>
</tr>
<tr>
<td>Ericaceae</td>
<td>Arctostaphylos</td>
<td>manzanita</td>
<td></td>
</tr>
</tbody>
</table>
Beneficial Insects & Mites

Cast of Characters

- Common Aphid
- Predaceous true bugs & beetles
- Lacewing
- Predaceous Mites
- Predaceous mites
- Syrphid Fly
- Lady Beetle
- Parasitic wasps & flies
“Old” vs. “Reduced Risk” Insecticides

“Old” Insecticides
- Broad-spectrum
- Higher toxicity
- Human safety concerns
- Environmental concerns

“Reduced Risk” Insecticides
- More selective
- Lower toxicity
- Shorter residuals
- Some are easier on natural enemies
<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Brand Name(s)</th>
<th>Class</th>
<th>Mode of Action</th>
<th>Toxicity Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>azadirachtin</td>
<td>Aza-Direct, Bioneem, Azatin</td>
<td>Botanical</td>
<td>Growth Regulator</td>
<td>Caution</td>
</tr>
<tr>
<td>Bacillus thuringiensis (Bt)</td>
<td>Dipel, Javelin, Thuricide</td>
<td>Microbial Bacterium</td>
<td>Larvicide</td>
<td>Caution</td>
</tr>
<tr>
<td>Beauveria bassiana</td>
<td>Botanigard, Naturalis</td>
<td>Microbial Fungus</td>
<td>Larvicide</td>
<td>Caution</td>
</tr>
<tr>
<td>beneficial nematodes</td>
<td>Steinernema, Bacteriophora</td>
<td>Biological Nematode</td>
<td>Larvicide, Adulticide</td>
<td>Caution</td>
</tr>
<tr>
<td>capsaicin</td>
<td>Hot Pepper Wax</td>
<td>Botanical</td>
<td>Repellent</td>
<td>Caution</td>
</tr>
</tbody>
</table>
Insecticides for the Home Garden & Orchard – Organic (cont.)

<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Brand Name(s)</th>
<th>Class</th>
<th>Mode of Action</th>
<th>Toxicity Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>diatomaceous earth</td>
<td>Natural Guard</td>
<td>Inorganic</td>
<td>Disrupts cuticle</td>
<td>Caution</td>
</tr>
<tr>
<td>horticultural mineral oil (dormant & summer)</td>
<td>Sunspray, Ultrafine, Orchex, Volck</td>
<td>Petroleum distillate</td>
<td>Suffocate</td>
<td>Caution</td>
</tr>
<tr>
<td>insecticidal soap</td>
<td>Safer, M-pede</td>
<td>Fatty acids</td>
<td>Disrupts cuticle</td>
<td>Caution</td>
</tr>
<tr>
<td>iron phosphate*</td>
<td>Sluggo, Ecar-Go</td>
<td>Inorganic</td>
<td>Feeding arrestant</td>
<td>Caution</td>
</tr>
<tr>
<td>Kaolin clay</td>
<td>Surround</td>
<td>Inorganic</td>
<td>Repellent</td>
<td>Caution</td>
</tr>
</tbody>
</table>

* Molluscicide (Snails & Slugs)
<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Brand Name(s)</th>
<th>Class</th>
<th>Mode of Action</th>
<th>Toxicity Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>lime sulfur</td>
<td></td>
<td>Inorganic</td>
<td>Broad-spectrum</td>
<td>Danger</td>
</tr>
<tr>
<td>pyrethrins, pyrethrum</td>
<td>Pyrellin, Pyganic</td>
<td>Botanical</td>
<td>Paralyze</td>
<td>Caution</td>
</tr>
<tr>
<td>rotenone</td>
<td></td>
<td>Botanical</td>
<td>Neurotoxin</td>
<td>Warning</td>
</tr>
<tr>
<td>spinosad</td>
<td>Entrust</td>
<td>Microbial</td>
<td>Neurotoxin</td>
<td>Caution</td>
</tr>
<tr>
<td>sucrose octanoate ester</td>
<td>Sucroicide</td>
<td>Natural product</td>
<td>Disrupts cuticle</td>
<td>Caution</td>
</tr>
<tr>
<td>sulfur</td>
<td></td>
<td>Inorganic</td>
<td>Broad-spectrum</td>
<td>Caution</td>
</tr>
</tbody>
</table>
Insecticides for the Home Garden & Orchard – Conventional

<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Brand Name(s)</th>
<th>Class</th>
<th>Mode of Action</th>
<th>Toxicity Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>bifenthrin</td>
<td>Ortho Lawn Insect</td>
<td>Pyrethroid</td>
<td>Neurotoxin</td>
<td>Warning</td>
</tr>
<tr>
<td>carbaryl</td>
<td>Sevin</td>
<td>Carbamate</td>
<td>Neurotoxin</td>
<td>Caution to Danger</td>
</tr>
<tr>
<td>cyfluthrin</td>
<td>Tempo, Bayer Adv.</td>
<td>Pyrethroid</td>
<td>Neurotoxin</td>
<td>Caution</td>
</tr>
<tr>
<td>endosulfan</td>
<td>Thiodan</td>
<td>Organo-chlorine</td>
<td>Neurotoxin</td>
<td>Warning</td>
</tr>
<tr>
<td>esfenvalerate</td>
<td>Ortho Bug-B-Gone</td>
<td>Pyrethroid</td>
<td>Neurotoxin</td>
<td>Warning</td>
</tr>
<tr>
<td>imidacloroprid</td>
<td>Bayer Adv.</td>
<td>Nicotinoid</td>
<td>Neurotoxin</td>
<td>Warning</td>
</tr>
</tbody>
</table>
Insecticides for the Home Garden & Orchard – Conventional (cont.)

<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Brand Name(s)</th>
<th>Class</th>
<th>Mode of Action</th>
<th>Toxicity Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>lambda-cyhalothrin</td>
<td>Triazicide</td>
<td>Pyrethroid</td>
<td>Neurotoxin</td>
<td>Caution</td>
</tr>
<tr>
<td></td>
<td>Soil & Turf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>malathion</td>
<td>Cythion</td>
<td>Organo-phosphate</td>
<td>Neurotoxin</td>
<td>Caution to Danger</td>
</tr>
<tr>
<td>permethrin</td>
<td>Astro, Spectracide</td>
<td>Pyrethroid</td>
<td>Neurotoxin</td>
<td>Caution</td>
</tr>
<tr>
<td>spinosad</td>
<td>Success, Conserve</td>
<td>Microbial</td>
<td>Neurotoxin</td>
<td>Caution</td>
</tr>
</tbody>
</table>
“New” Insecticides with Broad-Spectrum Activity

Sucking insects

Chewing insects

Borers
Nicotinoids

- Derived from nicotine
- Most have systemic activity; if applied to soil or injected can last for a season
- Neurotoxin - interfere with nerve impulses
 - Imidacloprid
 - Bayer Advanced Tree & Shrub, Bayer Ad. Lawn, Bayer Ad. Flower, GrubEx - Ornamental uses, Pome fruits & Pecans
 - Chewing & Sucking Insects: Aphids, Scale, Leaf beetles, Leafhoppers, Thrips (suppression), Root weevils, Billbugs, White grubs, Cutworms, Flatheaded borers, Roundheaded borers (suppression), Bark beetles (suppression)
Spinosad

- Bacterial fermentation product
- *Saccharopolyspora spinosa* discovered in soil of abandoned rum distillery in the Caribbean
- Neurotoxin – novel binding site in nerve transmission
 - Conserve – Herbaceous & Woody Orn., Turf
 - Success & Entrust (organic) – Fruits & Vegs.
 - Chewing & Sucking Insects: Caterpillars, Beetles, Thrips, Fly larvae, Leafminers, etc.
Beauveria bassiana

- Fungus, natural soil organism
- Fungal hyphae penetrate the insect's exoskeleton
 - Aphids, Plant bugs, Caterpillars, Beetle larvae, Mormon cricket, Grasshoppers, Mites
Ornamental Insect Pests

Chewing Injury
Tent Caterpillars

- **Hosts:**
 - Maple, poplar, cottonwood, plum, cherry, aspen, alder, willow, birch, apple, ash, others

- Eggs hatch in spring

- Larvae aggregate in groups; form webbing - tents
Tent Caterpillar Management

- Early detection
- Remove egg masses or young larvae/ tents - pruning, burning
- Bt (Dipel, Thuricide) & spinosad (Entrust, Success) - good coverage, target young larvae
- Contact insecticides:
 - Sevin, Pyrethroids, Malathion, others
- Systemic insecticide:
 - BAG Tree & Shrub (imidacloprid)
Elm & Cottonwood Leaf Beetles

- Adults over winter under bark, debris
- Females lay eggs on new growth in spring/early summer
- Skeletonize leaves; aggregate feeders
- Elm LB: pupate on ground at base of tree
- Cot LB: pupa hangs from leaves
- Multiple generations per summer
Leaf Beetle Management

- **Insecticide Bark Bands (ELB Only)**
 - Apply when mature larvae seen on leaves (May-June) - Sevin, Pyrethroids, Thiodan

- **Foliar Sprays of Selective Insecticides**
 - Summer oils - target young larvae
 - *Bacillus thuringiensis* var. *tenebrionis*
 - Spinosad (Entrust, Success)

- **Insecticides:** Merit, Imidan, Orthene, pyrethroids (Talstar, Tempo)

- **Biological Control**
 - Conserve Predators & Parasites
Lilac Root Weevil

- Drought related
- Observed heavy injury to shrubs & small trees

- Prevention of stress is the first & most important step (irrigation, soil, planting site)
Lilac Root Weevil
Otiorhynchus meridionalis

- Common hosts: lilac, peony, dogwood, yew, privet, cotoneaster, arbovitaes, spruce, others

- Adults chew irregular notches in leaf edges – target with foliar insecticide (*Azadirachtin, Pyrethrum, Spinosad*) – in late spring at first leaf notching

- Larvae feed on roots – target with soil insect-attacking nematodes (*Heterorhabditis*, *Beauveria* fungus) – late spring or early fall

Needle notching on spruce

Larvae feeding on crown & roots

Adult & leaf notching
European Earwig

- Primarily feed on decaying organic matter (saprophytic)
- Feed on young, tender plants; chew holes in flower petals, fruits; nuisance pest
- Adults are also predators; **nocturnal**
European Earwig

- Cultural & mechanical controls: avoid overuse of mulch and damp debris where they hide during the day; place and remove rolled newspaper; attractant traps: tuna can with bacon grease
- Chemicals: pyrethrum, azadirachtin, diatomaceous earth; target young in nests
- Tanglefoot on base of trunks, stems
Grasshoppers

- Young (nymphs) & adults chew holes in leaves, completely consuming foliage
- Move into yards from nearby rangeland, grassy areas, undeveloped lots
- Treat borders of property when young grasshoppers are first seen moving in
- Young are much easier to kill than adults
- Insecticidal baits: wheat bran + insecticide (carbaryl) – effective on young & adults
- Malathion, Sevin, Permethrin – most effective on young
- *Nosema locustae* (No-Lo-Bait) – natural pathogen of grasshoppers – treat young
Major Turf Insect Pests

- Surface / Thatch Feeders (leaf, stem):
 - Armyworm
 - Cutworm
 - Sod webworm
 - Mites

- Surface / Crown Feeders (burrow into stem, crown):
 - Billbug
 - Subterranean webworm

- Subsurface (root):
 - May & June beetles
White Grubs
May and June Beetles (*Phyllophaga*)
Black Turfgrass Ataenius (*Ataenius*)

- Scarab beetle family
- C-shaped white larvae
 - Brown head, legs
 - Eat roots
 - Turf “roll-back”
- 1-3 year life cycle
White Grubs
1-3 year life cycle

Spring

Summer

Fall/Winter

Can spend 1-2 years as 2nd to 3rd instar larva

2nd-3rd instars move 3” to 12” deep for winter

Pupate
White Grub Control

- Target small larvae (late spring-early summer)
- Target larvae before they dig deep for the winter (late summer to early fall)
- Threshold: 3-4 grubs/sq ft
- Irrigate to move chemicals to grubs in the upper root zone
 - Imidacloprid (Merit™, BAG Lawn)
 - Halofenozide (Mach 2™)
 - Carbaryl (Sevin™)
 - Trichlorfon (Dylox™)
 - Beneficial Nematodes - Heterorhabditis bacteriophora (Cruiser™), Steinernema carpocapsae (Scanmask™)
 - Fungus - Beauveria bassiana (Botanigard™, Naturalis™)
Ornamental Insect Pests
Piercing-Sucking Injury
Aphids

- Suck sap from phloem tubes in leaves and stems
- Curl leaves, produce sticky honeydew that promotes growth of black sooty mold, reduce plant vigor at high densities
- Populations increase rapidly, low numbers can be tolerated
- Only control if honeydew is a nuisance problem or distortion of leaves is severe and aphid numbers are very high
- Many generations per summer

Apple aphid curls leaves
Giant willow aphid feeds on limbs
Sooty mold
Aphid Management

- **Delayed Dormant Spray:** Dormant oil + Pyrethroid (at bud break)
- **Spring and Summer control:** hard spray of water, horticultural oil, insecticidal soap, BAG T&S (systemic), Conserve, azadirachtin, Orthene, pyrethroids, others
- **Biological control:** lady beetles, lacewings, syrphid flies, parasitic wasps
Scale Insects

- Soft scales feed in phloem, produce sticky honeydew
- Armored scales feed on mesophyll of plant cells, do not produce honeydew
- Multiple years of scale feeding can kill limbs; cause dieback
Scale Biology

- 1-2 generations per summer
- Overwinter as eggs or young nymphs
- Females are sessile
- Males have wings
- “Crawler” stage is the best target for control

Oystershell scale female surrounded by crawlers
Scale Management

- Delayed Dormant Control is effective for soft scales & some armored scales: Dormant oil + Pyrethroid (at first bud break)
- Use sticky tape in late spring to early summer to time a spray for “crawlers”
- Soft scales: BAG T&S (systemic), horticultural oil, insecticidal soap
- Armored scales: Pyrethroids or others timed with crawlers
Box Elder Bug

- Primarily a nuisance pest
- Exclusion of insects from buildings is most effective management
- Removal of female boxelder trees can be helpful (trees with winged seeds)
- Targeted removal of adults from problem areas (mechanical removal: hard spray of water, sweep, vacuum), chemical sprays
Ornamental Insect Pests

Tree Borers
Tree Borers

- Avoid planting trees with borer problems (birch, poplars, aspen, ash)
- Maintain good tree health - stressed trees are more prone to attack
- Preventive trunk insecticide sprays
- Systemic insecticide (BAG T&S) - beetles
Tree Borer Management

- **Preventive Trunk Treatments**
 - **Timing is critical (northern Utah)**
 - Ash/Lilac borer – May 1- late June
 - Bronze birch borer – late May – June
 - Aspen borer – May-July
 - Peachtree (Crown) borer – late June – August
 - Locust borer – August – Sept.
 - Shothole borer – May and Sept.

- **Insecticides:** Orthene, Sevin, Thiodan, Pyrethroids, BAG T&S
Ornamental Insect Pests

Gall Formers

Cooley Spruce Gall Adelgid

Poplar Twig Gall Fly
Cooley Spruce Gall Adelgid

- Form galls on new growth of spruce; also attack Douglas fir - cause needle swelling, necrosis and shedding
- Adults lay eggs on new "candle" growth in spring; young feeding forms galls
- Insecticide treatment at egg hatch (BAG T&S, Orthene, Malathion)
- Avoid planting spruce and Doug fir together
- Prune off green/purple galls
Poplar/Willow Twig Galls

- Twig Gall Flies
- Females lay eggs on new shoots
- Disfigure tree, but do not seem to threaten life of tree
- High rates of parasitism by parasitic wasps
Vegetable and Herb Garden
Insect Pests
Chewing Injury
Mexican Bean Beetle

- “Black sheep” of the lady beetle family
- Skeletonize leaves; scar stems & pods
- Cultural controls: Adults over winter in plant debris, clean up garden in fall
- Some beans are more resistant (Asian)
- Plant early and late crops; avoid major activity period of beetle (late July & August)
- Hand pick or squish
- Chemicals: Sevin, Permethrin, Neem oil, Success
Corn Earworm

- **Corn**: caterpillars feed on new silks & ear tips; reduce pollination & damage ear tips; allow entry of molds & attract other insects (sap beetles, earwigs)
- **Tomato & Pepper**: caterpillars feed on leaves & fruit
- **Cultural control**: Early crops avoid injury
- Protect young silk; difficult to control worms once inside ear tip
- **Chemicals**: Sevin, permethrin, pyrethrin, neem oil, oils applied to silks (reapply every few days)
- **Bt & Success** effective for tomato & pepper worms
Tomato Hornworm

- LARGE green caterpillars with horn on tail
- Feed on tomato, eggplant, potato
- Consume large amounts of foliage and buds in a short time period
- Remove by hand
- Chemicals: Bt (Dipel, Thuricide), Success, many others
- Parasitic wasp – white cocoons on caterpillars
Cabbage Worms

- Caterpillars chew large holes in leaves; produce abundant frass (excrement)
- Bt (Dipel, Thuricide), Success - very effective
- Row cover fabric) - cover plants to prevent egg-laying
Leafminers in Leafy Veggies

- Adults - Small flies
- Larvae - White to cream maggots
- Winding trails on leaves, white blotches
- Scout regularly, >1 mine/leaf
- Natural enemies (Paper wasp)
- Row covers
- Spinosad (Success, Entrust) insecticide
Vegetable & Herb Garden Pests

Piercing-Sucking Injury
Squash Bug

- Adults & nymphs suck fluids from plant leaves, stems & fruit; may transmit Yellow Vine Disease (bacteria)
- Congregate in plant debris under plants
- Cultural controls: Remove garden debris in fall, nearby woodpiles or other protected sites (adults over winter)
- Hand pick or destroy eggs & nymphs
- Chemicals: spray when first detect nymphs, drench undersides of leaves & stems
- Malathion, Sevin, permethrin, Neem oil, Thiodan, Surround (kaolin clay)
Spider Mites

- Very small; infested plants appear “dirty”; produce webbing, suck sap (remove chlorophyll); leaf speckling
- When severe, cause bronzing or silvering of leaves; populations build quickly in hot weather
- Suppress mite population before it explodes
- Controls: pressurized stream of water, horticultural oils, insecticidal soap
- Don’t recommend Vendex or other miticides unless a rescue treatment
- Biological control: Predaceous mites
Fruit Pests

Chewing Injury
Codling Moth

- Caterpillars bore into fruit; over winter as larvae inside silken coocoons on trunk; eggs laid by moth on leaf & fruit surfaces

- Chemical controls: target newly hatched larva; timing based on moth trap catch info. & degree-days in your area
 - Sevin (7-10 d), Permethrin (5-7 d), Malathion (5-7 d), Bt (3-5 d), CM Virus (CydX, Virusoft; 7 d)

- Sanitation: pick up dropped fruit

- Trunk banding: place corrugated cardboard bands (3-4” wide) around trunks (Jun-Sep)

- Fruit bagging (May-Aug)
Mechanical Codling Moth Controls

- Corrugated cardboard strip with codling moth pupa inside silk cocoon
- Fruit bags to exclude codling moth
- Place bags over 3/4” diameter fruit
Peach Twig Borer

- Over winter as young larvae on limbs; brown caterpillars burrow inside twigs from bloom to petal fall; a second generation enters fruit, usually at the stem end

- Delayed Dormant Spray: Dormant oil + Pyrethroid or Thiodan (by first pink) - targets twig boring OR At-Bloom Sprays: 2 Bt or Success sprays (early & full to late bloom)

- Fruit protection: Success, Permethrin, or Thiodan timed with trap catch and degree-day info. or apply at shuck-fall & repeat if needed
Western Cherry Fruit Fly

- Larvae feed in sweet & tart cherries; female flies lay eggs in ripening fruit; fruit doesn’t become soft enough for egg-laying until it turns straw to salmon colored

- Cultural controls: Landscape fabric or barrier under tree canopy

- Chemical control: Malathion (5 d), Sevin (5-7 d), Permethrin (5 d), Success (7 d), GF-120 Fruit Fly Bait (7 d)
Fruit Pests

Piercing-Sucking Injury
Grape & Virginia Creeper Leafhoppers

- Adults overwinter in leaf litter
- Lay eggs on new leaves
- 2 generations per season
- Natural enemies
- Vigorous vine growth
- Remove or incorporate leaves & debris
- Insecticides: Kaolin clay (Surround), Malathion, Spinosad (Success) - target young nymphs
Aphids

- Suck fluids from leaves & stems; curl leaves; produce sticky honeydew; black sooty mold growth
- Protect young trees, older trees can tolerate more aphid feeding
- Controls: Dormant oil + Pyrethroid or Thiodan (at green tip stage)
- Insecticidal soap, horticultural oil, Malathion, Pyrethroids, Thiodan, imidaclorpid (apple & pear)
- Biological control: lady beetles, lacewings, syrphid flies, parasitic wasps
San Jose Scale

- Scales encrust limbs; can kill limbs after several years of feeding; scales and feeding spots on fruit
- Controls: Dormant oil + Pyrethroid or Thiodan (at green tip or pink)
- Use sticky tape in May to time a spray for “crawlers”
- Horticultural oil, insecticidal soap, imidacloprid (apple & pear), Malathion, Thiodan
Spider Mites

- Feed on leaves; produce webbing; injury appears as white speckles; severe feeding leads to bronzing
- Mites build up on broadleaf weeds (bindweed, knotweed, mallow, prickly lettuce); reproduce rapidly in hot weather
- Cultural controls: Avoid mowing, herbicides, drying of vegetation - prompts mites to move into trees
- Avoid multiple applications of pyrethroid insecticides
- Biological control: naturally occurring predatory mites & small lady beetle
- Chemicals: horticultural oil, insecticidal soap
Fruit Pests

Tree and Cane Borer
Peachtree Borer

- Female clear-winged moths lay eggs on lower trunk or in cracks in soil near the base; larvae bore into the cambium in lower trunk; trees may be girdled & die; adults begin activity in late June to early July in northern Utah

- Control: Trunk spray with Thiodan or Pyrethroid during first week of July; repeat in first week of August
There are many other reasons that trees sap or bleed

Fungus canker Winter injury
Raspberry Horntail

- Wood wasp
- Cane tips wilt; larvae tunnel within pith
- Prune & destroy infested cane tops
- Parasitic wasp attacks horntail larvae
- Chemicals - treat in at bud break, repeat; avoid bloom: Sevin, Malathion, Permethrin