RECENT PLANT DISEASE ISSUES IN OR AROUND UTAH

Kent Evans, Plant Pathologist, Utah State University, Biology Department, 5305 Old Main Hill, Logan, UT 84322, 435-797-2504, ckevans@cc.usu.edu
UDAF current plant disease quarantines

Karnal Bunt (*Tilletia indica*)

Potato Virus Y (Necrotic Strain)

Mint Wilt (*Verticillium albo-atrum, V. dahliae*)
At present these diseases are not known to occur in Utah.

UDAF is trying to keep them out by imposing quarantines.

Main points for Karnal Bunt:
http://www.rules.utah.gov/publicat/code/r068/r068-018.htm

No wheat for SEED from entire state of AZ and NM counties Dona Ana, Hildalgo, Luna, and Sierra and TX counties El Paso, Hudspeth.

No equipment from those quarantined areas or plant products (soil too).
At present these diseases are not known to occur in Utah.

UDAF is trying to keep them out by imposing quarantines.

Main points for Potato Virus Y:
http://www.rules.utah.gov/publicat/code/r068/r068-017.htm

No potatoes for propagation or plants from the Solanaceae from Canadian provinces of New Brunswick, Nova Scotia, Ontario, Prince Edward Island, Quebec, or any other subsequent area it is found or any other plant, plant part, or article of conveyance....
At present these diseases are not known to occur in Utah.

UDAF is trying to keep them out by imposing quarantines.

Main points for Mint Wilt Quarantine:
http://www.rules.utah.gov/publicat/code/r068/r068-012.htm

No mint plants from outside of UT and only certified planting stock carrying approved documents (tags). No article or means of conveyance. (stay out)
Pests Near Utah but not (yet) in Utah:

- Potato Cyst Nematode (*Globodera pallida*)
- Sudden Oak Death (*Phytophthora ramorum*)
- Pine Wilt Nematode (*Bursaphelenchus xylophilus*)
Potato Cyst Nematode (*Globodera pallida*) identification based on morphological and molecular characters:

- Cyst shape
- Characteristics of cyst terminal cone including nature of fenestration (small windowlike thin areas)
- Cyst wall pattern
- Anal-vulval distance
- Number of cuticular ridges between anus and vulva
- Granek’s ratio
Globodera pallida J2 from Idaho tare soil; differential interference contrast composite images of central and superficial focal planes
The second-stage juvenile morphology critical for identification:

- Body length
- Stylet length
- Shape of stylet knobs
- Shape and length of tail
- Shape and length of hyaline tail terminus
- Number of refractive bodies in the hyaline part of tail
Morphological differences of the J2 heads (lip region) and tails of *Globodera rostochiensis* versus *G. pallida*
Some tails from the new population are somewhat more acutely pointed than the original population of *G. pallida*.

G. pallida has 4-7 distinctive refractive bodies in the hyaline portion of tail vs. 2 in *G. rostochiensis*.
Molecular diagnosis as *G. pallida*

Clear confirmation by two tests:

PCR-RFLP profiles of a ribosomal DNA fragment using restriction enzymes Rsal, TaqI, and AluI were consistent with a *G. pallida* control and not *G. rostochiensis*.

The ribosomal DNA region that extends from the 3’ end of the 18S ribosomal subunit and includes all of ITS1, 5.8S, and ITS2, to the 5’ end of the 28S ribosomal subunit was used to generate the most accurate species determination. Sequences obtained from three individual juveniles were compared to those from several *Globodera* species, revealing unequivocal similarity to *G. pallida*.

Andrea Skantar, Ph. D.,
Research Molecular Biologist
Sudden Oak Death (*Phytophthora ramorum*)

Was quarantined (no commerce of horticultural plants and/or soil from CA back in 2003-04.

Quarantine was lifted but new research has broadened the list of hosts and has pointed out newer more disconcerting information.
http://nature.berkeley.edu/comtf/
Pathogen Description

Phytophthora species are water molds that are well known plant pathogens. They are water-loving and produce plentiful spores in moist, humid conditions. While most foliar hosts do not die from the disease, they do play a key role in the spread of *P. ramorum*, acting as breeding ground for inoculum, which may then be spread through wind-driven rain, water, plant material, or human activity. Trunk hosts such as oaks are considered terminal hosts - the pathogen does not readily spread from intact bark cankers - and they become infected only when exposed to spores produced on the leaves of neighboring plants.
Multiple symptoms as the list of hosts is quite extensive. Causes cankers on some hosts, leaf lesions on others, both on some.

New research:

The recovery of *P. ramorum* as deep as the 5 to 10 cm (about 2-4 inches) depth class indicates that soil treatments at nurseries where the pathogen is detected in soil should aim to remove or kill inoculum to a depth of at least 10 cm. To minimize the potential for *P. ramorum* soil positives at retail nurseries, nursery personnel should consider storing and displaying known and associated host containerized nursery stock on concrete, blacktop, or well-drained gravel surfaces.
Pine Wilt Nematode (*Bursaphelenchus xylophilus*)

Why the concern?

Confirmed in Weld and Larimer Counties in Colorado.

Biology. (*Bursaphelenchus xylophilus*) is transported to pine trees by Pinesawyer beetles where it feeds on Blue-stain fungus as well as cells lining the resin canals of the tree.

The nematodes spread throughout the tree and multiply very rapidly. As they destroy the resin canal cells, the tree's water-moving system becomes clogged and resin flow stops.
Pine Wilt Nematode (*Bursaphelenchus xylophilus*)

Ecology. The widespread distribution of the pinewood nematode suggests that it is native to the United States.

Symptoms. Pine wilt symptoms develop very quickly. Affected trees can turn brown and die in as little as 3-weeks.

Damage to other crops. Pine wilt is most serious on Scots pine, although it has also been reported on Austrian and white pines. It is considered to be a potentially serious problem in landscape settings, windbreaks, Christmas tree farms, and recreational plantings.
Control. Dead trees must be cut down and burned before the sawyer beetles emerge in early to mid summer. Once infected there is no effective control measure.
There are many pathogens to be concerned about but these are nearby and coming at Utah through commerce routes.

Remember, knowledge is power!

Look for the unusual.

Be vigilant.

Ask questions.

Don’t hesitate to send a sample to the Utah Plant Pest Diagnostic Laboratory, we can help.
Tomorrow: Distance Diagnostics In Utah (DDIU)

Training on the Leica EZ4D scopes and the associated software that comes with it.

Training from Arthropod Diagnostician, Ryan Davis regarding tips to help him help you.

Training from specialists Diane Alston, Erin Hodgson, and Kent Evans regarding some diagnostic tips they have up their sleeves too.

Drive safely.