Optimizing Cherry Fruit Fly Trapping and Evaluation of Insecticides for Fruit Fly Control

Diane Alston
Utah State University
2004 Utah State Horticultural Association Convention
Cherry Fruit Fly Trapping and Control

- Monitoring and Spray Timing Issues
 - Low fruit fly populations
 - Difficult to set biofix & spray timing
 - Do all orchards have to be sprayed all the time?
 - Zero tolerance for larvae in fruit

- Optimize monitoring
 - Trap type
 - Trap density and placement

- Relationship of egg-laying to fruit maturity/color

- Performance of new insecticides
Trap Type
Monitoring Trap

Pherocon AM Trap + Ammonium Carbonate Bait Box

Deformed F-shaped bands
Small, clear pane above F
(Apple maggot – F, Walnut husk fly – V)

Western Cherry Fruit Fly

Pherocon AM Trap
+ Ammonium Carbonate Bait Box
Traditional Recommendations for Trap Placement

- Hotspots / Borders nearest sources
- 2 traps per acre / At least 2 traps per orchard
- Hang within canopy (6 ft)
- Hang so trap is visible & open
- Pherocon AM Trap
- Extra ammonium carbonate bait
 - Increase catch, extend longevity
Trap Density and Placement
2003 Study to Evaluate Optimal Trap Density and Placement

- **3 areas in Utah Co.:**
 - Payson (tarts)
 - Santaquin (tarts)
 - Genola (tarts and sweets)

- **4 orchard replicates in each area (12 orchards) + home yards**

- **Orchard size: 4-14 acres**

- **2 trap densities:**
 - 1 trap per acre
 - 3 traps per acre

- **2 trap placement designs:**
 - Borders only
 - Half in borders and half in interiors
Date of 1st Fly Catch in Relation to Total Catch

*Total number of flies caught per orchard from May 30-Jun 12
Flies were caught in 9 of 12 orchards; no flies caught in 3 orchards; no flies were caught in home yard trees

Tim Smith, WSU
Trap Density and Placement

<table>
<thead>
<tr>
<th>No. traps per acre</th>
<th>Mean no. flies per orchard</th>
<th>Trap placement</th>
<th>Total no. flies per 136 traps</th>
<th>Mean no. flies per trap</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49.2</td>
<td>Border</td>
<td>957 flies per 136 traps</td>
<td>7.0 flies per trap</td>
</tr>
<tr>
<td>3</td>
<td>284.3</td>
<td>Interior</td>
<td>1044 flies per 51 traps</td>
<td>20.5 flies per trap</td>
</tr>
</tbody>
</table>
Relationship of Fruit Fly Egg Laying to Fruit Color and Firmness
Fruit Color and Firmness

<table>
<thead>
<tr>
<th>Date</th>
<th>Fruit Color</th>
<th>Fruit Firmness</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 28</td>
<td>G</td>
<td>Max.</td>
</tr>
<tr>
<td>May 30</td>
<td>G, Y(sw)</td>
<td>Max.</td>
</tr>
<tr>
<td>Jun 2</td>
<td>G, Y(sw)</td>
<td>Max.</td>
</tr>
<tr>
<td>Jun 5</td>
<td>G, Y(t), Ro, Rd(sw)</td>
<td><Max.</td>
</tr>
<tr>
<td>Jun 12</td>
<td>G – Rd (t, sw)</td>
<td><Max.</td>
</tr>
<tr>
<td>Jun 19</td>
<td>G - Rd</td>
<td><Max.</td>
</tr>
<tr>
<td>Jun 26</td>
<td>Y - Rd</td>
<td><Max.</td>
</tr>
<tr>
<td>Jul 10</td>
<td>Ro - Rd</td>
<td><Max.</td>
</tr>
<tr>
<td>Date</td>
<td>% Females with Mature Eggs</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td>May 30</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Jun 2</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Jun 5</td>
<td>30</td>
<td></td>
</tr>
</tbody>
</table>

Females with mature eggs were present on Jun 2; before fruit were susceptible to egg laying (Jun 5 for sweets & Jun 12 for tarts)
Timing Control

- Use both fruit color & trapping data
- Fruit color / firmness / penetration
 - Yellow was too firm / Rose blush for penetration
- Trapping
 - 3 traps per acre 5-6X > 1 trap per acre
 - Interior traps 3X > Border traps
- First flies on traps / spray within 7 days
 - Number of flies on traps
- Degree-day model to predict fly emergence

Zero Tolerance
Performance of New Insecticides for Western Cherry Fruit Fly Control
Cherry Fruit Fly Control Research Trials

- 4 years of research plot trials
 - Small plots, Large plots, Whole orchards
- Moderate to high fruit fly populations
- Fruit injury (knock-down & residual activity)
- Suppression of adults (knock-down activity)
- Non-target effects (spider mites)
Utah WCFF Control Trials

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>% Fruit Injury at Harvest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>Calypso</td>
<td>0</td>
</tr>
<tr>
<td>Provado</td>
<td>0</td>
</tr>
<tr>
<td>Success</td>
<td>0</td>
</tr>
<tr>
<td>Guthion</td>
<td>0</td>
</tr>
<tr>
<td>Check</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Small plots | Orchards | Large plots
Knock-down Activity of Neonicotinoids

Mean number of western cherry fruit fly adults caught per trap (mean of four replications) as influenced by insecticide treatment and date, Kaysville, 2003

Solid arrows indicate insecticide spray timings; broken arrow indicates cherry harvest date
Residual Activity / Repellency of Neonicotinoids

Infestation of cherry fruits with western cherry fruit fly at harvest, July 17, 2003 - Kaysville

2.7% 0% 0%

20.6%
Neonicotinoids can stimulate spider mites

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Phytophagous motile stages</th>
<th>Phytophagous eggs</th>
<th>Predaceous motile stages</th>
<th>Predaceous eggs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calypso</td>
<td>16.5 a</td>
<td>78.3 b</td>
<td>3.3 bc</td>
<td>2.0</td>
</tr>
<tr>
<td>Provado</td>
<td>5.0 b</td>
<td>350.5 a</td>
<td>8.0 a</td>
<td>3.0</td>
</tr>
<tr>
<td>Guthion</td>
<td>0 b</td>
<td>5.8 c</td>
<td>5.8 ab</td>
<td>2.8</td>
</tr>
<tr>
<td>Untreated</td>
<td>1.5 b</td>
<td>16.0 c</td>
<td>2.0 bc</td>
<td>1.5</td>
</tr>
<tr>
<td>$P>F$</td>
<td>0.007</td>
<td><0.0001</td>
<td>0.02</td>
<td>0.52</td>
</tr>
</tbody>
</table>
Cherry Insecticides

- **Organophosphates**
 - Guthion, Imidan, Dimethoate, Diazinon, Malathion

- **Carbamates**
 - Sevin

- **Pyrethroids**
 - Asana, Warrior

- **Neonicotinoids**
 - Provado

- **Biologica尔斯/MIcrobiicals**
 - Success/Entrust

- **Attract-and-Kill**
 - Bait: GF-120NF (spinosad bait)
 - Killing station (bait + permethrin)
WCFF Control Recommendations

- Longevity of Guthion (2005) ?
- Dimethoate is being removed
- Maintain insecticide protection through harvest
- Rotate different materials to gain experience with them
- Concern for mite flare-ups with repeated sprays of Provado (14 d reappl./ 7dPHI)
- Success/Entrust (7 d reappl./ 7 d PHI)
GF-120NF Bait

Tim Smith, WSU in Wenatchee – Back yard sweet cherries and small orchards
GF-120NF (Bayer): spinosad bait and feeding attractant
20 oz product per acre (minutes to apply), weekly applications
Future Research Plans

- USDA RAMP Tart Cherry Grant (2003-07; $94,686)
- On-Farm Trials
 - Must develop experience with new tools & how best to implement them
 - Provado, Success, Monitoring, Timing
- Attract-and-Kill
- USU Extension wants to work with you

Diane Alston: dianea@biology.usu.edu / 435-797-2516
Shawn Steffan: steffan@biology.usu.edu / 435-797-0776